Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 26 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 216 tok/s Pro
2000 character limit reached

QRA++: Quantified Reproducibility Assessment for Common Types of Results in Natural Language Processing (2505.17043v1)

Published 13 May 2025 in cs.CL and cs.AI

Abstract: Reproduction studies reported in NLP provide individual data points which in combination indicate worryingly low levels of reproducibility in the field. Because each reproduction study reports quantitative conclusions based on its own, often not explicitly stated, criteria for reproduction success/failure, the conclusions drawn are hard to interpret, compare, and learn from. In this paper, we present QRA++, a quantitative approach to reproducibility assessment that (i) produces continuous-valued degree of reproducibility assessments at three levels of granularity; (ii) utilises reproducibility measures that are directly comparable across different studies; and (iii) grounds expectations about degree of reproducibility in degree of similarity between experiments. QRA++ enables more informative reproducibility assessments to be conducted, and conclusions to be drawn about what causes reproducibility to be better/poorer. We illustrate this by applying QRA++ to three example sets of comparable experiments, revealing clear evidence that degree of reproducibility depends on similarity of experiment properties, but also system type and evaluation method.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube