Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Self-Reasoning Language Models: Unfold Hidden Reasoning Chains with Few Reasoning Catalyst (2505.14116v1)

Published 20 May 2025 in cs.CL

Abstract: Inference-time scaling has attracted much attention which significantly enhance the performance of LLMs in complex reasoning tasks by increasing the length of Chain-of-Thought. These longer intermediate reasoning rationales embody various meta-reasoning skills in human cognition, such as reflection and decomposition, being difficult to create and acquire. In this work, we introduce \textit{Self-Reasoning LLM} (SRLM), where the model itself can synthesize longer CoT data and iteratively improve performance through self-training. By incorporating a few demonstration examples (i.e., 1,000 samples) on how to unfold hidden reasoning chains from existing responses, which act as a reasoning catalyst, we demonstrate that SRLM not only enhances the model's initial performance but also ensures more stable and consistent improvements in subsequent iterations. Our proposed SRLM achieves an average absolute improvement of more than $+2.5$ points across five reasoning tasks: MMLU, GSM8K, ARC-C, HellaSwag, and BBH on two backbone models. Moreover, it brings more improvements with more times of sampling during inference, such as absolute $+7.89$ average improvement with $64$ sampling times, revealing the in-depth, diverse and creative reasoning paths in SRLM against the strong baseline.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.