Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Generalized Category Discovery via Token Manifold Capacity Learning (2505.14044v1)

Published 20 May 2025 in cs.LG

Abstract: Generalized category discovery (GCD) is essential for improving deep learning models' robustness in open-world scenarios by clustering unlabeled data containing both known and novel categories. Traditional GCD methods focus on minimizing intra-cluster variations, often sacrificing manifold capacity, which limits the richness of intra-class representations. In this paper, we propose a novel approach, Maximum Token Manifold Capacity (MTMC), that prioritizes maximizing the manifold capacity of class tokens to preserve the diversity and complexity of data. MTMC leverages the nuclear norm of singular values as a measure of manifold capacity, ensuring that the representation of samples remains informative and well-structured. This method enhances the discriminability of clusters, allowing the model to capture detailed semantic features and avoid the loss of critical information during clustering. Through theoretical analysis and extensive experiments on coarse- and fine-grained datasets, we demonstrate that MTMC outperforms existing GCD methods, improving both clustering accuracy and the estimation of category numbers. The integration of MTMC leads to more complete representations, better inter-class separability, and a reduction in dimensional collapse, establishing MTMC as a vital component for robust open-world learning. Code is in github.com/lytang63/MTMC.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube