Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

The Geometry of ReLU Networks through the ReLU Transition Graph (2505.11692v2)

Published 16 May 2025 in cs.LG, cs.AI, and cs.NE

Abstract: We develop a novel theoretical framework for analyzing ReLU neural networks through the lens of a combinatorial object we term the ReLU Transition Graph (RTG). In this graph, each node corresponds to a linear region induced by the network's activation patterns, and edges connect regions that differ by a single neuron flip. Building on this structure, we derive a suite of new theoretical results connecting RTG geometry to expressivity, generalization, and robustness. Our contributions include tight combinatorial bounds on RTG size and diameter, a proof of RTG connectivity, and graph-theoretic interpretations of VC-dimension. We also relate entropy and average degree of the RTG to generalization error. Each theoretical result is rigorously validated via carefully controlled experiments across varied network depths, widths, and data regimes. This work provides the first unified treatment of ReLU network structure via graph theory and opens new avenues for compression, regularization, and complexity control rooted in RTG analysis.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.