Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 36 tok/s
GPT-5 High 34 tok/s Pro
GPT-4o 91 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 217 tok/s Pro
2000 character limit reached

On the Interconnections of Calibration, Quantification, and Classifier Accuracy Prediction under Dataset Shift (2505.11380v1)

Published 16 May 2025 in cs.LG

Abstract: When the distribution of the data used to train a classifier differs from that of the test data, i.e., under dataset shift, well-established routines for calibrating the decision scores of the classifier, estimating the proportion of positives in a test sample, or estimating the accuracy of the classifier, become particularly challenging. This paper investigates the interconnections among three fundamental problems, calibration, quantification, and classifier accuracy prediction, under dataset shift conditions. Specifically, we prove their equivalence through mutual reduction, i.e., we show that access to an oracle for any one of these tasks enables the resolution of the other two. Based on these proofs, we propose new methods for each problem based on direct adaptations of well-established methods borrowed from the other disciplines. Our results show such methods are often competitive, and sometimes even surpass the performance of dedicated approaches from each discipline. The main goal of this paper is to fostering cross-fertilization among these research areas, encouraging the development of unified approaches and promoting synergies across the fields.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run custom paper prompts using GPT-5 on this paper.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)