Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 100 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Kimi K2 186 tok/s Pro
2000 character limit reached

Informed Forecasting: Leveraging Auxiliary Knowledge to Boost LLM Performance on Time Series Forecasting (2505.10213v1)

Published 15 May 2025 in cs.LG and stat.AP

Abstract: With the widespread adoption of LLMs, there is a growing need to establish best practices for leveraging their capabilities beyond traditional natural language tasks. In this paper, a novel cross-domain knowledge transfer framework is proposed to enhance the performance of LLMs in time series forecasting -- a task of increasing relevance in fields such as energy systems, finance, and healthcare. The approach systematically infuses LLMs with structured temporal information to improve their forecasting accuracy. This study evaluates the proposed method on a real-world time series dataset and compares it to a naive baseline where the LLM receives no auxiliary information. Results show that knowledge-informed forecasting significantly outperforms the uninformed baseline in terms of predictive accuracy and generalization. These findings highlight the potential of knowledge transfer strategies to bridge the gap between LLMs and domain-specific forecasting tasks.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.