Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Dark LLMs: The Growing Threat of Unaligned AI Models (2505.10066v1)

Published 15 May 2025 in cs.CL, cs.AI, cs.CR, and cs.LG

Abstract: LLMs rapidly reshape modern life, advancing fields from healthcare to education and beyond. However, alongside their remarkable capabilities lies a significant threat: the susceptibility of these models to jailbreaking. The fundamental vulnerability of LLMs to jailbreak attacks stems from the very data they learn from. As long as this training data includes unfiltered, problematic, or 'dark' content, the models can inherently learn undesirable patterns or weaknesses that allow users to circumvent their intended safety controls. Our research identifies the growing threat posed by dark LLMs models deliberately designed without ethical guardrails or modified through jailbreak techniques. In our research, we uncovered a universal jailbreak attack that effectively compromises multiple state-of-the-art models, enabling them to answer almost any question and produce harmful outputs upon request. The main idea of our attack was published online over seven months ago. However, many of the tested LLMs were still vulnerable to this attack. Despite our responsible disclosure efforts, responses from major LLM providers were often inadequate, highlighting a concerning gap in industry practices regarding AI safety. As model training becomes more accessible and cheaper, and as open-source LLMs proliferate, the risk of widespread misuse escalates. Without decisive intervention, LLMs may continue democratizing access to dangerous knowledge, posing greater risks than anticipated.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com