Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 10 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Improving Data Fidelity via Diffusion Model-based Correction and Super-Resolution (2505.08526v2)

Published 13 May 2025 in math.NA and cs.NA

Abstract: We propose a unified diffusion model-based correction and super-resolution method to enhance the fidelity and resolution of diverse low-quality data through a two-step pipeline. First, the correction step employs a novel enhanced stochastic differential editing technique based on an imbalanced perturbation and denoising process, ensuring robust and effective bias correction at the low-resolution level. The robustness and effectiveness of this approach are validated theoretically and experimentally. Next, the super-resolution step leverages cascaded conditional diffusion models to iteratively refine the corrected data to high-resolution. Numerical experiments on three PDE problems and a climate dataset demonstrate that the proposed method effectively enhances low-fidelity, low-resolution data by correcting numerical errors and noise while simultaneously improving resolution to recover fine-scale structures.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.