Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Short and useful quantum proofs for sublogarithmic-space verifiers (2505.08462v1)

Published 13 May 2025 in cs.CC

Abstract: Quantum Merlin-Arthur proof systems are believed to be stronger than both their classical counterparts and ``stand-alone'' quantum computers when Arthur is assumed to operate in $\Omega(\log n)$ space. No hint of such an advantage over classical computation had emerged from research on smaller space bounds, which had so far concentrated on constant-space verifiers. We initiate the study of quantum Merlin-Arthur systems with space bounds in $\omega(1) \cap o(\log n)$, and exhibit a problem family $\mathcal{F}$, whose yes-instances have proofs that are verifiable by polynomial-time quantum Turing machines operating in this regime. We show that no problem in $\mathcal{F}$ has proofs that can be verified classically or is solvable by a stand-alone quantum machine in polynomial time if standard complexity assumptions hold. Unlike previous examples of small-space verifiers, our protocols require only subpolynomial-length quantum proofs.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.