Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 86 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Kimi K2 160 tok/s Pro
2000 character limit reached

Will Your Next Pair Programming Partner Be Human? An Empirical Evaluation of Generative AI as a Collaborative Teammate in a Semester-Long Classroom Setting (2505.08119v1)

Published 12 May 2025 in cs.HC

Abstract: Generative AI (GenAI), especially LLMs, is rapidly reshaping both programming workflows and computer science education. Many programmers now incorporate GenAI tools into their workflows, including for collaborative coding tasks such as pair programming. While prior research has demonstrated the benefits of traditional pair programming and begun to explore GenAI-assisted coding, the role of LLM-based tools as collaborators in pair programming remains underexamined. In this work, we conducted a mixed-methods study with 39 undergraduate students to examine how GenAI influences collaboration, learning, and performance in pair programming. Specifically, students completed six in-class assignments under three conditions: Traditional Pair Programming (PP), Pair Programming with GenAI (PAI), and Solo Programming with GenAI (SAI). They used both LLM-based inline completion tools (e.g., GitHub Copilot) and LLM-based conversational tools (e.g., ChatGPT). Our results show that students in PAI achieved the highest assignment scores, whereas those in SAI attained the lowest. Additionally, students' attitudes toward LLMs' programming capabilities improved significantly after collaborating with LLM-based tools, and preferences were largely shaped by the perceived usefulness for completing assignments and learning programming skills, as well as the quality of collaboration. Our qualitative findings further reveal that while students appreciated LLM-based tools as valuable pair programming partners, they also identified limitations and had different expectations compared to human teammates. Our study provides one of the first empirical evaluations of GenAI as a pair programming collaborator through a comparison of three conditions (PP, PAI, and SAI). We also discuss the design implications and pedagogical considerations for future GenAI-assisted pair programming approaches.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.