Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 27 tok/s
GPT-5 High 22 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 163 tok/s Pro
2000 character limit reached

A Fourier-based inference method for learning interaction kernels in particle systems (2505.05207v1)

Published 8 May 2025 in math.ST, cs.NA, math.NA, and stat.TH

Abstract: We consider the problem of inferring the interaction kernel of stochastic interacting particle systems from observations of a single particle. We adopt a semi-parametric approach and represent the interaction kernel in terms of a generalized Fourier series. The basis functions in this expansion are tailored to the problem at hand and are chosen to be orthogonal polynomials with respect to the invariant measure of the mean-field dynamics. The generalized Fourier coefficients are obtained as the solution of an appropriate linear system whose coefficients depend on the moments of the invariant measure, and which are approximated from the particle trajectory that we observe. We quantify the approximation error in the Lebesgue space weighted by the invariant measure and study the asymptotic properties of the estimator in the joint limit as the observation interval and the number of particles tend to infinity, i.e. the joint large time-mean field limit. We also explore the regime where an increasing number of generalized Fourier coefficients is needed to represent the interaction kernel. Our theoretical results are supported by extensive numerical simulations.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com