Mix-QSAM: Mixed-Precision Quantization of the Segment Anything Model (2505.04861v1)
Abstract: The Segment Anything Model (SAM) is a popular vision foundation model; however, its high computational and memory demands make deployment on resource-constrained devices challenging. While Post-Training Quantization (PTQ) is a practical approach for reducing computational overhead, existing PTQ methods rely on fixed bit-width quantization, leading to suboptimal accuracy and efficiency. To address this limitation, we propose Mix-QSAM, a mixed-precision PTQ framework for SAM. First, we introduce a layer-wise importance score, derived using Kullback-Leibler (KL) divergence, to quantify each layer's contribution to the model's output. Second, we introduce cross-layer synergy, a novel metric based on causal mutual information, to capture dependencies between adjacent layers. This ensures that highly interdependent layers maintain similar bit-widths, preventing abrupt precision mismatches that degrade feature propagation and numerical stability. Using these metrics, we formulate an Integer Quadratic Programming (IQP) problem to determine optimal bit-width allocation under model size and bit-operation constraints, assigning higher precision to critical layers while minimizing bit-width in less influential layers. Experimental results demonstrate that Mix-QSAM consistently outperforms existing PTQ methods on instance segmentation and object detection tasks, achieving up to 20% higher average precision under 6-bit and 4-bit mixed-precision settings, while maintaining computational efficiency.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.