Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Bringing legal knowledge to the public by constructing a legal question bank using large-scale pre-trained language model (2505.04132v1)

Published 7 May 2025 in cs.CL and cs.AI

Abstract: Access to legal information is fundamental to access to justice. Yet accessibility refers not only to making legal documents available to the public, but also rendering legal information comprehensible to them. A vexing problem in bringing legal information to the public is how to turn formal legal documents such as legislation and judgments, which are often highly technical, to easily navigable and comprehensible knowledge to those without legal education. In this study, we formulate a three-step approach for bringing legal knowledge to laypersons, tackling the issues of navigability and comprehensibility. First, we translate selected sections of the law into snippets (called CLIC-pages), each being a small piece of article that focuses on explaining certain technical legal concept in layperson's terms. Second, we construct a Legal Question Bank (LQB), which is a collection of legal questions whose answers can be found in the CLIC-pages. Third, we design an interactive CLIC Recommender (CRec). Given a user's verbal description of a legal situation that requires a legal solution, CRec interprets the user's input and shortlists questions from the question bank that are most likely relevant to the given legal situation and recommends their corresponding CLIC pages where relevant legal knowledge can be found. In this paper we focus on the technical aspects of creating an LQB. We show how large-scale pre-trained LLMs, such as GPT-3, can be used to generate legal questions. We compare machine-generated questions (MGQs) against human-composed questions (HCQs) and find that MGQs are more scalable, cost-effective, and more diversified, while HCQs are more precise. We also show a prototype of CRec and illustrate through an example how our 3-step approach effectively brings relevant legal knowledge to the public.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube