Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On the Residual-based Neural Network for Unmodeled Distortions in Coordinate Transformation (2505.03757v1)

Published 19 Apr 2025 in physics.geo-ph, cs.CV, cs.LG, stat.AP, and stat.ML

Abstract: Coordinate transformation models often fail to account for nonlinear and spatially dependent distortions, leading to significant residual errors in geospatial applications. Here we propose a residual-based neural correction strategy, in which a neural network learns to model only the systematic distortions left by an initial geometric transformation. By focusing solely on residual patterns, the proposed method reduces model complexity and improves performance, particularly in scenarios with sparse or structured control point configurations. We evaluate the method using both simulated datasets with varying distortion intensities and sampling strategies, as well as under the real-world image georeferencing tasks. Compared with direct neural network coordinate converter and classical transformation models, the residual-based neural correction delivers more accurate and stable results under challenging conditions, while maintaining comparable performance in ideal cases. These findings demonstrate the effectiveness of residual modelling as a lightweight and robust alternative for improving coordinate transformation accuracy.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 2 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube