Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Automated Data Curation Using GPS & NLP to Generate Instruction-Action Pairs for Autonomous Vehicle Vision-Language Navigation Datasets (2505.03174v1)

Published 6 May 2025 in cs.RO, cs.CV, and cs.LG

Abstract: Instruction-Action (IA) data pairs are valuable for training robotic systems, especially autonomous vehicles (AVs), but having humans manually annotate this data is costly and time-inefficient. This paper explores the potential of using mobile application Global Positioning System (GPS) references and NLP to automatically generate large volumes of IA commands and responses without having a human generate or retroactively tag the data. In our pilot data collection, by driving to various destinations and collecting voice instructions from GPS applications, we demonstrate a means to collect and categorize the diverse sets of instructions, further accompanied by video data to form complete vision-language-action triads. We provide details on our completely automated data collection prototype system, ADVLAT-Engine. We characterize collected GPS voice instructions into eight different classifications, highlighting the breadth of commands and referentialities available for curation from freely available mobile applications. Through research and exploration into the automation of IA data pairs using GPS references, the potential to increase the speed and volume at which high-quality IA datasets are created, while minimizing cost, can pave the way for robust vision-language-action (VLA) models to serve tasks in vision-language navigation (VLN) and human-interactive autonomous systems.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube