Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 102 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 99 tok/s
GPT OSS 120B 472 tok/s Pro
Kimi K2 196 tok/s Pro
2000 character limit reached

Efficient Curvature-Aware Hypergradient Approximation for Bilevel Optimization (2505.02101v1)

Published 4 May 2025 in math.OC and cs.LG

Abstract: Bilevel optimization is a powerful tool for many machine learning problems, such as hyperparameter optimization and meta-learning. Estimating hypergradients (also known as implicit gradients) is crucial for developing gradient-based methods for bilevel optimization. In this work, we propose a computationally efficient technique for incorporating curvature information into the approximation of hypergradients and present a novel algorithmic framework based on the resulting enhanced hypergradient computation. We provide convergence rate guarantees for the proposed framework in both deterministic and stochastic scenarios, particularly showing improved computational complexity over popular gradient-based methods in the deterministic setting. This improvement in complexity arises from a careful exploitation of the hypergradient structure and the inexact Newton method. In addition to the theoretical speedup, numerical experiments demonstrate the significant practical performance benefits of incorporating curvature information.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com