Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 13 tok/s
GPT-5 High 17 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 460 tok/s Pro
Kimi K2 198 tok/s Pro
2000 character limit reached

Rogue Cell: Adversarial Attack and Defense in Untrusted O-RAN Setup Exploiting the Traffic Steering xApp (2505.01816v1)

Published 3 May 2025 in cs.CR and cs.LG

Abstract: The Open Radio Access Network (O-RAN) architecture is revolutionizing cellular networks with its open, multi-vendor design and AI-driven management, aiming to enhance flexibility and reduce costs. Although it has many advantages, O-RAN is not threat-free. While previous studies have mainly examined vulnerabilities arising from O-RAN's intelligent components, this paper is the first to focus on the security challenges and vulnerabilities introduced by transitioning from single-operator to multi-operator RAN architectures. This shift increases the risk of untrusted third-party operators managing different parts of the network. To explore these vulnerabilities and their potential mitigation, we developed an open-access testbed environment that integrates a wireless network simulator with the official O-RAN Software Community (OSC) RAN intelligent component (RIC) cluster. This environment enables realistic, live data collection and serves as a platform for demonstrating APATE (adversarial perturbation against traffic efficiency), an evasion attack in which a malicious cell manipulates its reported key performance indicators (KPIs) and deceives the O-RAN traffic steering to gain unfair allocations of user equipment (UE). To ensure that O-RAN's legitimate activity continues, we introduce MARRS (monitoring adversarial RAN reports), a detection framework based on a long-short term memory (LSTM) autoencoder (AE) that learns contextual features across the network to monitor malicious telemetry (also demonstrated in our testbed). Our evaluation showed that by executing APATE, an attacker can obtain a 248.5% greater UE allocation than it was supposed to in a benign scenario. In addition, the MARRS detection method was also shown to successfully classify malicious cell activity, achieving accuracy of 99.2% and an F1 score of 0.978.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.