Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Surrogate to Poincaré inequalities on manifolds for dimension reduction in nonlinear feature spaces (2505.01807v2)

Published 3 May 2025 in math.NA, cs.LG, and cs.NA

Abstract: We aim to approximate a continuously differentiable function $u:\mathbb{R}d \rightarrow \mathbb{R}$ by a composition of functions $f\circ g$ where $g:\mathbb{R}d \rightarrow \mathbb{R}m$, $m\leq d$, and $f : \mathbb{R}m \rightarrow \mathbb{R}$ are built in a two stage procedure. For a fixed $g$, we build $f$ using classical regression methods, involving evaluations of $u$. Recent works proposed to build a nonlinear $g$ by minimizing a loss function $\mathcal{J}(g)$ derived from Poincar\'e inequalities on manifolds, involving evaluations of the gradient of $u$. A problem is that minimizing $\mathcal{J}$ may be a challenging task. Hence in this work, we introduce new convex surrogates to $\mathcal{J}$. Leveraging concentration inequalities, we provide sub-optimality results for a class of functions $g$, including polynomials, and a wide class of input probability measures. We investigate performances on different benchmarks for various training sample sizes. We show that our approach outperforms standard iterative methods for minimizing the training Poincar\'e inequality based loss, often resulting in better approximation errors, especially for rather small training sets and $m=1$.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.