Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A dynamic view of the double descent (2505.01751v1)

Published 3 May 2025 in math.OC and cs.LG

Abstract: It has been observed by Belkin et al.\ that overparametrized neural networks exhibit a double descent' phenomenon. That is, as the model complexity, as reflected in the number of features, increases, the training error initially decreases, then increases, and then decreases again. A counterpart of this phenomenon in the time domain has been noted in the context of epoch-wise training, viz., that the training error decreases with time, then increases, then decreases again. This note presents a plausible explanation for this phenomenon by using the theory of two time scale stochastic approximation and singularly perturbed differential equations, applied to the continuous time limit of the gradient dynamics. This adds adynamic' angle to an already well studied theme.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)