Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Sensor Agnostic Domain Generalization Framework for Leveraging Geospatial Foundation Models: Enhancing Semantic Segmentation viaSynergistic Pseudo-Labeling and Generative Learning (2505.01558v1)

Published 2 May 2025 in cs.CV

Abstract: Remote sensing enables a wide range of critical applications such as land cover and land use mapping, crop yield prediction, and environmental monitoring. Advances in satellite technology have expanded remote sensing datasets, yet high-performance segmentation models remain dependent on extensive labeled data, challenged by annotation scarcity and variability across sensors, illumination, and geography. Domain adaptation offers a promising solution to improve model generalization. This paper introduces a domain generalization approach to leveraging emerging geospatial foundation models by combining soft-alignment pseudo-labeling with source-to-target generative pre-training. We further provide new mathematical insights into MAE-based generative learning for domain-invariant feature learning. Experiments with hyperspectral and multispectral remote sensing datasets confirm our method's effectiveness in enhancing adaptability and segmentation.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.