Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Enhancing IoT-Botnet Detection using Variational Auto-encoder and Cost-Sensitive Learning: A Deep Learning Approach for Imbalanced Datasets (2505.01437v1)

Published 26 Apr 2025 in cs.LG and cs.AI

Abstract: The Internet of Things (IoT) technology has rapidly gained popularity with applications widespread across a variety of industries. However, IoT devices have been recently serving as a porous layer for many malicious attacks to both personal and enterprise information systems with the most famous attacks being botnet-related attacks. The work in this study leveraged Variational Auto-encoder (VAE) and cost-sensitive learning to develop lightweight, yet effective, models for IoT-botnet detection. The aim is to enhance the detection of minority class attack traffic instances which are often missed by machine learning models. The proposed approach is evaluated on a multi-class problem setting for the detection of traffic categories on highly imbalanced datasets. The performance of two deep learning models including the standard feed forward deep neural network (DNN), and Bidirectional-LSTM (BLSTM) was evaluated and both recorded commendable results in terms of accuracy, precision, recall and F1-score for all traffic classes.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets