Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 102 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 99 tok/s
GPT OSS 120B 472 tok/s Pro
Kimi K2 196 tok/s Pro
2000 character limit reached

A Provably Convergent Plug-and-Play Framework for Stochastic Bilevel Optimization (2505.01258v1)

Published 2 May 2025 in math.OC and cs.LG

Abstract: Bilevel optimization has recently attracted significant attention in machine learning due to its wide range of applications and advanced hierarchical optimization capabilities. In this paper, we propose a plug-and-play framework, named PnPBO, for developing and analyzing stochastic bilevel optimization methods. This framework integrates both modern unbiased and biased stochastic estimators into the single-loop bilevel optimization framework introduced in [9], with several improvements. In the implementation of PnPBO, all stochastic estimators for different variables can be independently incorporated, and an additional moving average technique is applied when using an unbiased estimator for the upper-level variable. In the theoretical analysis, we provide a unified convergence and complexity analysis for PnPBO, demonstrating that the adaptation of various stochastic estimators (including PAGE, ZeroSARAH, and mixed strategies) within the PnPBO framework achieves optimal sample complexity, comparable to that of single-level optimization. This resolves the open question of whether the optimal complexity bounds for solving bilevel optimization are identical to those for single-level optimization. Finally, we empirically validate our framework, demonstrating its effectiveness on several benchmark problems and confirming our theoretical findings.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com