Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 94 tok/s
GPT OSS 120B 476 tok/s Pro
Kimi K2 190 tok/s Pro
2000 character limit reached

The Promises of Multiple Experiments: Identifying Joint Distribution of Potential Outcomes (2504.20470v1)

Published 29 Apr 2025 in stat.ME

Abstract: Typical causal effects are defined based on the marginal distribution of potential outcomes. However, many real-world applications require causal estimands involving the joint distribution of potential outcomes to enable more nuanced treatment evaluation and selection. In this article, we propose a novel framework for identifying and estimating the joint distribution of potential outcomes using multiple experimental datasets. We introduce the assumption of transportability of state transition probabilities for potential outcomes across datasets and establish the identification of the joint distribution under this assumption, along with a regular full-column rank condition. The key identification assumptions are testable in an overidentified setting and are analogous to those in the context of instrumental variables, with the dataset indicator serving as "instrument". Moreover, we propose an easy-to-use least-squares-based estimator for the joint distribution of potential outcomes in each dataset, proving its consistency and asymptotic normality. We further extend the proposed framework to identify and estimate principal causal effects. We empirically demonstrate the proposed framework by conducting extensive simulations and applying it to evaluate the surrogate endpoint in a real-world application.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)