Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 59 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Multimodal Pipeline for Clinical Data Extraction: Applying Vision-Language Models to Scans of Transfusion Reaction Reports (2504.20220v1)

Published 28 Apr 2025 in cs.CL and cs.CV

Abstract: Despite the growing adoption of electronic health records, many processes still rely on paper documents, reflecting the heterogeneous real-world conditions in which healthcare is delivered. The manual transcription process is time-consuming and prone to errors when transferring paper-based data to digital formats. To streamline this workflow, this study presents an open-source pipeline that extracts and categorizes checkbox data from scanned documents. Demonstrated on transfusion reaction reports, the design supports adaptation to other checkbox-rich document types. The proposed method integrates checkbox detection, multilingual optical character recognition (OCR) and multilingual vision-LLMs (VLMs). The pipeline achieves high precision and recall compared against annually compiled gold-standards from 2017 to 2024. The result is a reduction in administrative workload and accurate regulatory reporting. The open-source availability of this pipeline encourages self-hosted parsing of checkbox forms.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube