Fourier and Helgason Fourier transforms for Vector Bundle-valued Differential Forms on Homogeneous Spaces (2504.18543v3)
Abstract: We employ the perspective of the functional equation satisfied by the classical Fourier transform to derive the Helgason Fourier transform map $\Omega{l}(G/K,W)\longrightarrow\Omega{k}(G/K\times G/P,V[\chi]):f\longmapsto \widehat{f}:G/K\times G/P\mapsto V[\chi]:(x,b)\longmapsto\widehat{f}(x,b)$ (for $W-$valued differential forms $f\in \Omega{l}(G/K,W)$) as the $G-$ invariant vector bundle-valued differential form $\widehat{f}$ on the product space $G/K\times G/P$ whose image under the vector bundle-valued Poisson transform is the fibre convolution-integral $\varphi{U{\sigma,\nu}}_{\tau,l,k}* f$ on $G/K,$ where $\varphi{U{\sigma,\nu}}_{\tau,l,k}$ is the $W-$valued $\tau-$spherical $l-$form on $G/K.$ Explicitly, we prove that $$\widehat{f}{l,k,\varepsilon(\lambda)}(x,b)=({\bf C{o}\lambda)}{-1}\circ\beta{V}(\lambda))\circ(\int_{G/K}\varphi{U{\sigma\nu},t}{\lambda,l,k}\wedge\pi{*}{K}f)(x),$$ where $b\in G/P$ is a consequence of the boundary map $\beta{V}(\lambda),$ ${\bf C_{o}(\lambda)}$ is the vector bundle-valued Harish-Chandra $c-$function and for some $\lambda-$linear relation, $\varepsilon(\lambda).$ The Fourier transform is found to be the map $\Omega{l}G/K,W)\longrightarrow\Omega{k}(G/K\times G/P,W)$ $:f\mapsto f{\triangle}:$ $G/P\times G/K\longrightarrow W$ $:(b,x)\longmapsto f{\triangle}(b,x)$ and is then established to be explicitly given as $f{\triangle}_{l,k,\upsilon(\lambda)}(b,x)=$ $$\int_{G/P}\phi_{k,l,\lambda}\wedge\pi{*}_{P}(({\bf C_{o}(\lambda)}{-1}\circ\beta{V}\lambda))\circ(\int_{G/K}\varphi{U{\sigma\nu},t}{\lambda,l,k}\wedge\pi{*}{K}f)(x)),$$ where $\upsilon(\lambda)$ is some $\lambda-$linear relation.