Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Enhancing Visual Interpretability and Explainability in Functional Survival Trees and Forests (2504.18498v1)

Published 25 Apr 2025 in stat.ML, cs.LG, and stat.ME

Abstract: Functional survival models are key tools for analyzing time-to-event data with complex predictors, such as functional or high-dimensional inputs. Despite their predictive strength, these models often lack interpretability, which limits their value in practical decision-making and risk analysis. This study investigates two key survival models: the Functional Survival Tree (FST) and the Functional Random Survival Forest (FRSF). It introduces novel methods and tools to enhance the interpretability of FST models and improve the explainability of FRSF ensembles. Using both real and simulated datasets, the results demonstrate that the proposed approaches yield efficient, easy-to-understand decision trees that accurately capture the underlying decision-making processes of the model ensemble.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com