OptimAI: Optimization from Natural Language Using LLM-Powered AI Agents (2504.16918v2)
Abstract: Optimization plays a vital role in scientific research and practical applications. However, formulating a concrete optimization problem described in natural language into a mathematical form and selecting a suitable solver to solve the problem requires substantial domain expertise. We introduce OptimAI, a framework for solving Optimization problems described in natural language by leveraging LLM-powered AI agents, and achieve superior performance over current state-of-the-art methods. Our framework is built upon the following key roles: (1) a formulator that translates natural language problem descriptions into precise mathematical formulations; (2) a planner that constructs a high-level solution strategy prior to execution; and (3) a coder and a code critic capable of interacting with the environment and reflecting on outcomes to refine future actions. Ablation studies confirm that all roles are essential; removing the planner or code critic results in $5.8\times$ and $3.1\times$ drops in productivity, respectively. Furthermore, we introduce UCB-based debug scheduling to dynamically switch between alternative plans, yielding an additional $3.3\times$ productivity gain. Our design emphasizes multi-agent collaboration, and our experiments confirm that combining diverse models leads to performance gains. Our approach attains 88.1% accuracy on the NLP4LP dataset and 82.3% on the Optibench dataset, reducing error rates by 58% and 52%, respectively, over prior best results.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.