Machine-learning-based simulation of turbulent flows over periodic hills using a hybrid U-Net and Fourier neural operator framework (2504.13126v3)
Abstract: Simulating massively separated turbulent flows over bodies is one of the major applications for large-eddy simulation (LES). In the current work, we propose a machine-learning-based LES framework for the rapid simulation of turbulent flows over periodic hills using a hybrid U-Net and Fourier neural operator (HUFNO) framework. The newly proposed HUFNO model integrates the strengths of both the convolutional neural network (CNN) and Fourier neural operator (FNO) in a way that the FNO is applied in the periodic directions of the flow field while the non-periodicity is handled by the CNN-based U-Net framework. In the \emph{a posteriori} tests, compared to the original FNO and the U-Net framework, the HUFNO model shows a higher accuracy in the predictions of the velocity field and Reynolds stresses. Further numerical experiments in the LES show that the HUFNO framework outperforms the traditional Smagorinsky (SMAG) model and the wall-adapted local eddy-viscosity (WALE) model in the predictions of the turbulence statistics, the energy spectrum, the invariant characteristics of velocity gradients, the wall stresses and the flow separation structures, with much lower computational cost. Importantly, the accuracy and efficiency are transferable to unseen initial conditions and hill shapes, underscoring its great potentials for the fast prediction of strongly separated turbulent flows over curved boundaries.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.