Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s
GPT-5 High 23 tok/s Pro
GPT-4o 94 tok/s
GPT OSS 120B 378 tok/s Pro
Kimi K2 146 tok/s Pro
2000 character limit reached

iHHO-SMOTe: A Cleansed Approach for Handling Outliers and Reducing Noise to Improve Imbalanced Data Classification (2504.12850v1)

Published 17 Apr 2025 in cs.LG

Abstract: Classifying imbalanced datasets remains a significant challenge in machine learning, particularly with big data where instances are unevenly distributed among classes, leading to class imbalance issues that impact classifier performance. While Synthetic Minority Over-sampling Technique (SMOTE) addresses this challenge by generating new instances for the under-represented minority class, it faces obstacles in the form of noise and outliers during the creation of new samples. In this paper, a proposed approach, iHHO-SMOTe, which addresses the limitations of SMOTE by first cleansing the data from noise points. This process involves employing feature selection using a random forest to identify the most valuable features, followed by applying the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm to detect outliers based on the selected features. The identified outliers from the minority classes are then removed, creating a refined dataset for subsequent oversampling using the hybrid approach called iHHO-SMOTe. The comprehensive experiments across diverse datasets demonstrate the exceptional performance of the proposed model, with an AUC score exceeding 0.99, a high G-means score of 0.99 highlighting its robustness, and an outstanding F1-score consistently exceeding 0.967. These findings collectively establish Cleansed iHHO-SMOTe as a formidable contender in addressing imbalanced datasets, focusing on noise reduction and outlier handling for improved classification models.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.