Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 94 tok/s
GPT OSS 120B 476 tok/s Pro
Kimi K2 190 tok/s Pro
2000 character limit reached

Generative Recommendation with Continuous-Token Diffusion (2504.12007v1)

Published 16 Apr 2025 in cs.IR and cs.AI

Abstract: In recent years, there has been a significant trend toward using LLM-based recommender systems (RecSys). Current research primarily focuses on representing complex user-item interactions within a discrete space to align with the inherent discrete nature of LLMs. However, this approach faces limitations due to its discrete nature: (i) information is often compressed during discretization; (ii) the tokenization and generation for the vast number of users and items in real-world scenarios are constrained by a limited vocabulary. Embracing continuous data presents a promising alternative to enhance expressive capabilities, though this approach is still in its early stages. To address this gap, we propose a novel framework, DeftRec, which incorporates \textbf{de}noising di\textbf{f}fusion models to enable LLM-based RecSys to seamlessly support continuous \textbf{t}oken as input and target. First, we introduce a robust tokenizer with a masking operation and an additive K-way architecture to index users and items, capturing their complex collaborative relationships into continuous tokens. Crucially, we develop a denoising diffusion model to process user preferences within continuous domains by conditioning on reasoning content from pre-trained LLM. During the denoising process, we reformulate the objective to include negative interactions, building a comprehensive understanding of user preferences for effective and accurate recommendation generation. Finally, given a continuous token as output, recommendations can be easily generated through score-based retrieval. Extensive experiments demonstrate the effectiveness of the proposed methods, showing that DeftRec surpasses competitive benchmarks, including both traditional and emerging LLM-based RecSys.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com