Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 127 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Finite Mixture Cox Model for Heterogeneous Time-dependent Right-Censored Data (2504.08908v1)

Published 11 Apr 2025 in stat.ME and stat.CO

Abstract: In this study, we address the challenge of survival analysis within heterogeneous patient populations, where traditional reliance on a single regression model such as the Cox proportional hazards (Cox PH) model often falls short. Recognizing that such populations frequently exhibit varying covariate effects, resulting in distinct subgroups, we argue for the necessity of using separate regression models for each subgroup to avoid the biases and inaccuracies inherent in a uniform model. To address subgroup identification and component selection in survival analysis, we propose a novel approach that integrates the Cox PH model with dynamic penalty functions, specifically the smoothly clipped absolute deviation (SCAD) and the minimax concave penalty (MCP). These modifications provide a more flexible and theoretically sound method for determining the optimal number of mixture components, which is crucial for accurately modeling heterogeneous datasets. Through a modified expectation--maximization (EM) algorithm for parameter estimation and component selection, supported by simulation studies and two real data analyses, our method demonstrates improved precision in risk prediction.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com