Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 76 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

A Riemannian Gradient Descent Method for the Least Squares Inverse Eigenvalue Problem (2504.07809v1)

Published 10 Apr 2025 in math.NA and cs.NA

Abstract: We address an algorithm for the least squares fitting of a subset of the eigenvalues of an unknown Hermitian matrix lying an an affine subspace, called the Lift and Projection (LP) method, due to Chen and Chu (SIAM Journal on Numerical Analysis, 33 (1996), pp.2417-2430). The LP method iteratively `lifts' the current iterate onto the spectral constraint manifold then 'projects' onto the solution's affine subspace. We prove that this is equivalent to a Riemannian Gradient Descent with respect to a natural Riemannian metric. This insight allows us to derive a more efficient implementation, analyse more precisely its global convergence properties, and naturally append additional constraints to the problem. We provide several numerical experiments to demonstrate the improvement in computation time, which can be more than an order of magnitude if the eigenvalue constraints are on the smallest eigenvalues, the largest eigenvalues, or the eigenvalues closest to a given number. These experiments include an inverse eigenvalue problem arising in Inelastic Neutron Scattering of Manganese-6, which requires the least squares fitting of 16 experimentally observed eigenvalues of a $32400\times32400$ sparse matrix from a 5-dimensional subspace of spin Hamiltonian matrices.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube