Follow-the-Perturbed-Leader Approaches Best-of-Both-Worlds for the m-Set Semi-Bandit Problems (2504.07307v3)
Abstract: We consider a common case of the combinatorial semi-bandit problem, the $m$-set semi-bandit, where the learner exactly selects $m$ arms from the total $d$ arms. In the adversarial setting, the best regret bound, known to be $\mathcal{O}(\sqrt{nmd})$ for time horizon $n$, is achieved by the well-known Follow-the-Regularized-Leader (FTRL) policy. However, this requires to explicitly compute the arm-selection probabilities via optimizing problems at each time step and sample according to them. This problem can be avoided by the Follow-the-Perturbed-Leader (FTPL) policy, which simply pulls the $m$ arms that rank among the $m$ smallest (estimated) loss with random perturbation. In this paper, we show that FTPL with a Fr\'echet perturbation also enjoys the near optimal regret bound $\mathcal{O}(\sqrt{nm}(\sqrt{d\log(d)}+m{5/6}))$ in the adversarial setting and approaches best-of-both-world regret bounds, i.e., achieves a logarithmic regret for the stochastic setting. Moreover, our lower bounds show that the extra factors are unavoidable with our approach; any improvement would require a fundamentally different and more challenging method.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.