Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Almost everywhere convergence of the convolution type Laguerre expansions (2504.06713v1)

Published 9 Apr 2025 in math.FA

Abstract: For a fixed d-tuple $\alpha=(\alpha_1,...,\alpha_d)\in(-1,\infty)d$, consider the product space $\mathbb{R}+d:=(0,\infty)d$ equipped with Euclidean distance $\arrowvert \cdot \arrowvert$ and the measure $d\mu{\alpha}(x)=x_1{2\alpha_1+1}\cdot\cdot\cdot x_{d}{\alpha_d}dx_1\cdot\cdot\cdot dx_d$. We consider the Laguerre operator $L_{\alpha}=-\Delta+\sum_{i=1}{d}\frac{2\alpha_j+1}{x_j}\frac{d}{dx_j}+\arrowvert x\arrowvert2$ which is a compact, positive, self-adjoint operator on $L2(\mathbb{R}+d,d\mu{\alpha}(x))$. In this paper, we study almost everywhere convergence of the Bochner-Riesz means associated with $L_\alpha$ which is defined by $S_R{\lambda}(L_\alpha)f(x)=\sum_{n=0}{\infty}(1-\frac{e_n}{R2})_{+}{\lambda}P_nf(x)$. Here $e_n$ is n-th eigenvalue of $L_{\alpha}$, and $P_nf(x)$ is the n-th Laguerre spectral projection operator. This corresponds to the convolution-type Laguerre expansions introduced in Thangavelu's lecture \cite{TS3}. For $2\leq p<\infty$, we prove that $$\lim_{R\rightarrow\infty} S_R{\lambda}(L_\alpha)f=f\,\,\,\,-a.e.$$ for all $f\in Lp(\mathbb{R}+d,d\mu{\alpha}(x))$, provided that $\lambda>\lambda(\alpha,p)/2$, where $\lambda(\alpha,p)=\max{2(\arrowvert\alpha\arrowvert_1+d)(1/2-1/p)-1/2,0}$, and $\arrowvert\alpha\arrowvert_1:=\sum_{j=1}{d}\alpha_{j}$. Conversely, if $2\arrowvert\alpha\arrowvert_{1}+2d>1$, we will show the convergence generally fails if $\lambda<\lambda(\alpha,p)/2$ in the sense that there is an $f\in Lp(\mathbb{R}+d,d\mu{\alpha}(x))$ for $(4\arrowvert\alpha\arrowvert_{1}+4d)/(2\arrowvert\alpha\arrowvert_{1}+2d-1)< p$ such that the convergence fails. When $2\arrowvert\alpha\arrowvert_{1}+2d\leq1$, our results show that a.e. convergence holds for $f\in Lp(\mathbb{R}+d,d\mu{\alpha}(x))$ with $p\geq 2$ whenever $\lambda>0$.

Summary

We haven't generated a summary for this paper yet.