Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

On the Effectiveness and Generalization of Race Representations for Debiasing High-Stakes Decisions (2504.06303v1)

Published 7 Apr 2025 in cs.CY, cs.AI, cs.CL, and cs.LG

Abstract: Understanding and mitigating biases is critical for the adoption of LLMs in high-stakes decision-making. We introduce Admissions and Hiring, decision tasks with hypothetical applicant profiles where a person's race can be inferred from their name, as simplified test beds for racial bias. We show that Gemma 2B Instruct and LLaMA 3.2 3B Instruct exhibit strong biases. Gemma grants admission to 26% more White than Black applicants, and LLaMA hires 60% more Asian than White applicants. We demonstrate that these biases are resistant to prompt engineering: multiple prompting strategies all fail to promote fairness. In contrast, using distributed alignment search, we can identify "race subspaces" within model activations and intervene on them to debias model decisions. Averaging the representation across all races within the subspaces reduces Gemma's bias by 37-57%. Finally, we examine the generalizability of Gemma's race subspaces, and find limited evidence for generalization, where changing the prompt format can affect the race representation. Our work suggests mechanistic approaches may provide a promising venue for improving the fairness of LLMs, but a universal race representation remains elusive.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube