Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 236 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Debate Only When Necessary: Adaptive Multiagent Collaboration for Efficient LLM Reasoning (2504.05047v2)

Published 7 Apr 2025 in cs.AI

Abstract: Multiagent collaboration has emerged as a promising framework for enhancing the reasoning capabilities of LLMs. Despite improvements in reasoning, the approach introduces substantial computational overhead resulting from iterative agent interactions. Furthermore, engaging in unnecessary debates increases the risk of generating erroneous responses. To address these challenges, we propose Debate Only When Necessary (DOWN), an adaptive multiagent debate framework that selectively activates debate based on the confidence score of the agent's initial response. Debate is activated only for queries requiring further deliberation, during which agents refine their outputs by referencing peer responses and associated confidence scores. Evaluations on benchmarks show that DOWN improves efficiency by up to six times while preserving or even outperforming the performance of existing methods. Further analysis indicates that DOWN effectively mitigates the risk of error propagation stemming from the unnecessary debate process. These findings demonstrate the effectiveness of our approach in delivering high-performance LLM solutions at a lower computational cost.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.