Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 40 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 161 tok/s Pro
2000 character limit reached

Bilinear Data-Driven Min-Max MPC: Designing Rational Controllers via Sum-of-squares Optimization (2504.04870v1)

Published 7 Apr 2025 in eess.SY and cs.SY

Abstract: We propose a data-driven min-max model predictive control (MPC) scheme to control unknown discrete-time bilinear systems. Based on a sequence of noisy input-state data, we state a set-membership representation for the unknown system dynamics. Then, we derive a sum-of-squares (SOS) program that minimizes an upper bound on the worst-case cost over all bilinear systems consistent with the data. As a crucial technical ingredient, the SOS program involves a rational controller parameterization to improve feasibility and tractability. We prove that the resulting data-driven MPC scheme ensures closed-loop stability and constraint satisfaction for the unknown bilinear system. We demonstrate the practicality of the proposed scheme in a numerical example.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.