Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 88 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Kimi K2 207 tok/s Pro
2000 character limit reached

TathyaNyaya and FactLegalLlama: Advancing Factual Judgment Prediction and Explanation in the Indian Legal Context (2504.04737v1)

Published 7 Apr 2025 in cs.CL, cs.AI, cs.IR, and cs.LG

Abstract: In the landscape of Fact-based Judgment Prediction and Explanation (FJPE), reliance on factual data is essential for developing robust and realistic AI-driven decision-making tools. This paper introduces TathyaNyaya, the largest annotated dataset for FJPE tailored to the Indian legal context, encompassing judgments from the Supreme Court of India and various High Courts. Derived from the Hindi terms "Tathya" (fact) and "Nyaya" (justice), the TathyaNyaya dataset is uniquely designed to focus on factual statements rather than complete legal texts, reflecting real-world judicial processes where factual data drives outcomes. Complementing this dataset, we present FactLegalLlama, an instruction-tuned variant of the LLaMa-3-8B LLM, optimized for generating high-quality explanations in FJPE tasks. Finetuned on the factual data in TathyaNyaya, FactLegalLlama integrates predictive accuracy with coherent, contextually relevant explanations, addressing the critical need for transparency and interpretability in AI-assisted legal systems. Our methodology combines transformers for binary judgment prediction with FactLegalLlama for explanation generation, creating a robust framework for advancing FJPE in the Indian legal domain. TathyaNyaya not only surpasses existing datasets in scale and diversity but also establishes a benchmark for building explainable AI systems in legal analysis. The findings underscore the importance of factual precision and domain-specific tuning in enhancing predictive performance and interpretability, positioning TathyaNyaya and FactLegalLlama as foundational resources for AI-assisted legal decision-making.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube