Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 102 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 99 tok/s
GPT OSS 120B 472 tok/s Pro
Kimi K2 196 tok/s Pro
2000 character limit reached

CALF: A Conditionally Adaptive Loss Function to Mitigate Class-Imbalanced Segmentation (2504.04458v1)

Published 6 Apr 2025 in eess.IV and cs.CV

Abstract: Imbalanced datasets pose a considerable challenge in training deep learning (DL) models for medical diagnostics, particularly for segmentation tasks. Imbalance may be associated with annotation quality limited annotated datasets, rare cases, or small-scale regions of interest (ROIs). These conditions adversely affect model training and performance, leading to segmentation boundaries which deviate from the true ROIs. Traditional loss functions, such as Binary Cross Entropy, replicate annotation biases and limit model generalization. We propose a novel, statistically driven, conditionally adaptive loss function (CALF) tailored to accommodate the conditions of imbalanced datasets in DL training. It employs a data-driven methodology by estimating imbalance severity using statistical methods of skewness and kurtosis, then applies an appropriate transformation to balance the training dataset while preserving data heterogeneity. This transformative approach integrates a multifaceted process, encompassing preprocessing, dataset filtering, and dynamic loss selection to achieve optimal outcomes. We benchmark our method against conventional loss functions using qualitative and quantitative evaluations. Experiments using large-scale open-source datasets (i.e., UPENN-GBM, UCSF, LGG, and BraTS) validate our approach, demonstrating substantial segmentation improvements. Code availability: https://anonymous.4open.science/r/MICCAI-Submission-43F9/.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.