Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 94 tok/s
GPT OSS 120B 476 tok/s Pro
Kimi K2 190 tok/s Pro
2000 character limit reached

Learning Flatness-Preserving Residuals for Pure-Feedback Systems (2504.04324v2)

Published 6 Apr 2025 in eess.SY and cs.SY

Abstract: We study residual dynamics learning for differentially flat systems, where a nominal model is augmented with a learned correction term from data. A key challenge is that generic residual parameterizations may destroy flatness, limiting the applicability of flatness-based planning and control methods. To address this, we propose a framework for learning flatness-preserving residual dynamics in systems whose nominal model admits a pure-feedback form. We show that residuals with a lower-triangular structure preserve both the flatness of the system and the original flat outputs. Moreover, we provide a constructive procedure to recover the flatness diffeomorphism of the augmented system from that of the nominal model. We then introduce a learning algorithm that fits such residuals from trajectory data using smooth function approximators. Our approach is validated in simulation on a 2D quadrotor subject to unmodeled aerodynamic effects. We demonstrate that the resulting learned flat model enables tracking performance comparable to nonlinear model predictive control ($5\times$ lower tracking error than the nominal flat model) while also achieving over a $20\times$ speedup in computation.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.