Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Variational autoencoders understand knot topology (2504.04179v1)

Published 5 Apr 2025 in cond-mat.stat-mech, cond-mat.soft, and cs.LG

Abstract: Supervised ML methods are emerging as valid alternatives to standard mathematical methods for identifying knots in long, collapsed polymers. Here, we introduce a hybrid supervised/unsupervised ML approach for knot classification based on a variational autoencoder enhanced with a knot type classifier (VAEC). The neat organization of knots in its latent representation suggests that the VAEC, only based on an arbitrary labeling of three-dimensional configurations, has grasped complex topological concepts such as chirality, unknotting number, braid index, and the grouping in families such as achiral, torus, and twist knots. The understanding of topological concepts is confirmed by the ability of the VAEC to distinguish the chirality of knots $9_{42}$ and $10_{71}$ not used for its training and with a notoriously undetected chirality to standard tools. The well-organized latent space is also key for generating configurations with the decoder that reliably preserves the topology of the input ones. Our findings demonstrate the ability of a hybrid supervised-generative ML algorithm to capture different topological features of entangled filaments and to exploit this knowledge to faithfully reconstruct or produce new knotted configurations without simulations.

Summary

We haven't generated a summary for this paper yet.