Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Machine Learning of Knot Topology in Non-Hermitian Band Braids (2401.10908v1)

Published 8 Jan 2024 in cond-mat.mes-hall

Abstract: The deep connection among braids, knots and topological physics has provided valuable insights into studying topological states in various physical systems. However, identifying distinct braid groups and knot topology embedded in non-Hermitian systems is challenging and requires significant efforts. Here, we demonstrate that an unsupervised learning with the representation basis of $su(n)$ Lie algebra on $n$-fold extended non-Hermitian bands can fully classify braid group and knot topology therein, without requiring any prior mathematical knowledge or any pre-defined topological invariants. We demonstrate that the approach successfully identifies different topological elements, such as unlink, unknot, Hopf link, Solomon ring, trefoil, and so on, by employing generalized Gell-Mann matrices in non-Hermitian models with $n$=2 and $n$=3 energy bands. Moreover, since eigenstate information of non-Hermitian bands is incorporated in addition to eigenvalues, the approach distinguishes the different parity-time symmetry and breaking phases, recognizes the opposite chirality of braids and knots, and identifies out distinct topological phases that were overlooked before. Our study shows significant potential of machine learning in classification of knots, braid groups, and non-Hermitian topological phases.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. M. Atiyah, The Geometry and Physics of Knots, Lezioni Lincee (Cambridge University Press, 1990).
  2. Q. Wu, A. A. Soluyanov, and B. Tomáš, Non-abelian band topology in noninteracting metals, Science 365, 1273 (2019).
  3. C. N. Yang, Some exact results for the many-body problem in one dimension with repulsive delta-function interaction, Physical Review Letters 19, 1312 (1967).
  4. M. JIMBO, Introduction to the yang-baxter equation, International Journal of Modern Physics A 04, 3759 (1989), https://doi.org/10.1142/S0217751X89001503 .
  5. X.-Q. Sun, B. Lian, and S.-C. Zhang, Double helix nodal line superconductor, Physical Review Letters 119, 147001 (2017).
  6. J. Ren and N. A. Sinitsyn, Braid group and topological phase transitions in nonequilibrium stochastic dynamics, Physical Review E 87, 050101(R) (2013).
  7. H. Hu and E. Zhao, Knots and non-hermitian bloch bands, Physical Review Letters 126, 010401 (2021).
  8. B. Midya, Gain-loss-induced non-abelian bloch braids, Applied Physics Letters 123, 123101 (2023).
  9. P. Ozsváth and Z. Szabó, Holomorphic disks and knot invariants, Advances in Mathematics 186, 58 (2004).
  10. E. Witten, Quantum field theory and the jones polynomial, Communications in Mathematical Physics 121, 351 (1989).
  11. L. Wang, Discovering phase transitions with unsupervised learning, Physical Review B 94, 195105 (2016).
  12. C. Wang and H. Zhai, Machine learning of frustrated classical spin models. i. principal component analysis, Phys. Rev. B 96, 144432 (2017).
  13. S. J. Wetzel, Unsupervised learning of phase transitions: From principal component analysis to variational autoencoders, Physical Review E 96, 022140 (2017).
  14. J. F. Rodriguez-Nieva and M. S. Scheurer, Identifying topological order through unsupervised machine learning, Nature Physics 15, 790 (2019).
  15. A. Lidiak and Z. Gong, Unsupervised machine learning of quantum phase transitions using diffusion maps, Physical Review Letters 125, 225701 (2020).
  16. Y. Long, J. Ren, and H. Chen, Unsupervised manifold clustering of topological phononics, Physical Review Letters 124, 185501 (2020).
  17. M. S. Scheurer and R.-J. Slager, Unsupervised machine learning and band topology, Physical Review Letters 124, 226401 (2020).
  18. L.-W. Yu and D.-L. Deng, Unsupervised learning of non-hermitian topological phases, Physical Review Letters 126, 240402 (2021).
  19. S. Park, Y. Hwang, and B.-J. Yang, Unsupervised learning of topological phase diagram using topological data analysis, Physical Review B 105, 195115 (2022).
  20. Y. Long and B. Zhang, Unsupervised data-driven classification of topological gapped systems with symmetries, Physical Review Letters 130, 036601 (2023).
  21. R. R. Coifman and S. Lafon, Diffusion maps, Applied and Computational Harmonic Analysis 21, 5 (2006).
  22. P. Zhang, H. Shen, and H. Zhai, Machine learning topological invariants with neural networks, Physical Review Letters 120, 066401 (2018).
  23. H. Qian, Phosphorylation energy hypothesis: Open chemical systems and their biological functions, Annual Review of Physical Chemistry 58, 113 (2007).
  24. R. D. Astumian, Stochastic conformational pumping: A mechanism for free-energy transduction by molecules, Annual Review of Biophysics 40, 289 (2011).
Citations (5)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com