Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The level of distribution of the sum-of-digits function in arithmetic progressions (2504.02784v1)

Published 3 Apr 2025 in math.NT

Abstract: For $q \geq 2$, $n \in \mathbb{N}$, let $s_{q}(n)$ denote the sum of the digits of $n$ written in base $q$. Spiegelhofer (2020) proved that the Thue--Morse sequence has level of distribution $1$, improving on a former result of Fouvry and Mauduit (1996). In this paper we generalize this result to sequences of type $\left{\exp\left(2\pi i\ell s_q(n)/b\right)\right}_{n \in \mathbb{N}}$ and provide an explicit exponent in the upper bound.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com