Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bounds For The Tail Distribution Of The Sum Of Digits Of Prime Numbers (1211.2455v1)

Published 11 Nov 2012 in math.NT

Abstract: Let s_q(n) denote the base q sum of digits function, which for n<x, is centered around (q-1)/2 log_q x. In Drmota, Mauduit and Rivat's 2009 paper, they look at sum of digits of prime numbers, and provide asymptotics for the size of the set {p<x, p prime : s_q(p)=alpha(q-1)log_q x} where alpha lies in a tight range around 1/2. In this paper, we examine the tails of this distribution, and provide the lower bound |{p < x, p prime : s_q(p)>alpha(q-1)log_q x}| >>x{2(1-alpha)}e{-c(log x){1/2+epsilon}} for 1/2<alpha<0.7375. To attain this lower bound, we note that the multinomial distribution is sharply peaked, and apply results regarding primes in short intervals. This proves that there are infinitely many primes with more than twice as many ones than zeros in their binary expansion.

Summary

We haven't generated a summary for this paper yet.