Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On Average Distance, Level-1 Fourier Weight, and Chang's Lemma (2504.02593v1)

Published 3 Apr 2025 in math.CO, cs.DM, cs.IT, and math.IT

Abstract: In this paper, we improve the well-known level-1 weight bound, also known as Chang's lemma, by using an induction method. Our bounds are close to optimal no matter when the set is large or small. Our bounds can be seen as bounds on the minimum average distance problem, since maximizing the level-1 weight is equivalent to minimizing the average distance. We apply our new bounds to improve the Friedgut--Kalai--Naor theorem. We also derive the sharp version for Chang's original lemma for $\mathbb{F}{2}{n}$. That is, we show that in $\mathbb{F}{2}{n}$, Hamming balls maximize the dimension of the space spanned by large Fourier coefficients.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube