Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Locally- but not Globally-identified SVARs (2504.01441v1)

Published 2 Apr 2025 in econ.EM

Abstract: This paper analyzes Structural Vector Autoregressions (SVARs) where identification of structural parameters holds locally but not globally. In this case there exists a set of isolated structural parameter points that are observationally equivalent under the imposed restrictions. Although the data do not inform us which observationally equivalent point should be selected, the common frequentist practice is to obtain one as a maximum likelihood estimate and perform impulse response analysis accordingly. For Bayesians, the lack of global identification translates to non-vanishing sensitivity of the posterior to the prior, and the multi-modal likelihood gives rise to computational challenges as posterior sampling algorithms can fail to explore all the modes. This paper overcomes these challenges by proposing novel estimation and inference procedures. We characterize a class of identifying restrictions and circumstances that deliver local but non-global identification, and the resulting number of observationally equivalent parameter values. We propose algorithms to exhaustively compute all admissible structural parameters given reduced-form parameters and utilize them to sample from the multi-modal posterior. In addition, viewing the set of observationally equivalent parameter points as the identified set, we develop Bayesian and frequentist procedures for inference on the corresponding set of impulse responses. An empirical example illustrates our proposal.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.