Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Age-Aware Partial Gradient Update Strategy for Federated Learning Over the Air (2504.01357v1)

Published 2 Apr 2025 in cs.DC

Abstract: We propose an age-aware strategy to update gradients in an over-the-air federated learning system. The system comprises an edge server and multiple clients, collaborating to minimize a global loss function. In each communication round, clients perform local training, modulate their gradient updates onto a set of shared orthogonal waveforms, and simultaneously transmit the analog signals to the edge server. The edge server then extracts a noisy aggregated gradient from the received radio signal, updates the global model, and broadcasts it to the clients for the next round of local computing. Despite enabling all clients to upload information in every communication round, the system is constrained by the limited number of available waveform carriers, allowing only a subset of gradient parameters to be transmitted. To address this issue, our method maintains an age vector on the edge server, tracking the time elapsed since each coordinate of the global model was last updated. The server leverages this information to prioritize gradient entries for transmission, ensuring that outdated yet significant parameters are updated more frequently. We derive the convergence rate of the proposed algorithm to quantify its effectiveness. Furthermore, experimental evaluations on the MNIST and CIFAR-10 datasets demonstrate that our approach achieves higher accuracy and more stable convergence performance compared to baseline methods, highlighting its potential for improving communication efficiency in over-the-air federated learning systems.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube