Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exact Diagonalization, Matrix Product States and Conformal Perturbation Theory Study of a 3D Ising Fuzzy Sphere Model (2504.00842v1)

Published 1 Apr 2025 in cond-mat.stat-mech, cond-mat.str-el, hep-lat, and hep-th

Abstract: Numerical studies of phase transitions in statistical and quantum lattice models provide crucial insights into the corresponding Conformal Field Theories (CFTs). In higher dimensions, comparing finite-volume numerical results to infinite-volume CFT data is facilitated by choosing the sphere $S{d-1}$ as the spatial manifold. Recently, the fuzzy sphere regulator in Ref. [Zhu et al, Phys. Rev. X 13 021009 (2023)] has enabled such studies with exact rotational invariance, yielding impressive agreement with known 3D Ising CFT predictions, as well as new results. However, systematic improvements and a deeper understanding of finite-size corrections remain essential. In this work, we revisit the fuzzy sphere regulator, focusing on the original Ising model, with two main goals. First, we assess the robustness of this approach using Conformal Perturbation Theory (CPT), to which we provide a detailed guidebook. We demonstrate how CPT provides a unified framework for determining the critical point, the speed of light, and residual deviations from CFT predictions. Applying this framework, we study finite-size corrections and clarify the role of tuning the model in minimizing these effects. Second, we develop a novel method for extracting Operator Product Expansion (OPE) coefficients from fuzzy sphere data. This method leverages the sensitivity of energy levels to detuning from criticality, providing new insights into level mixing and avoided crossings in finite systems. Our work also includes validation of CPT in a 1+1D Ising model away from the integrable limit.

Summary

We haven't generated a summary for this paper yet.