2000 character limit reached
3D Ising CFT and Exact Diagonalization on Icosahedron: The Power of Conformal Perturbation Theory (2307.02540v4)
Published 5 Jul 2023 in hep-th, cond-mat.stat-mech, and cond-mat.str-el
Abstract: We consider the transverse field Ising model in $(2+1)$D, putting 12 spins at the vertices of the regular icosahedron. The model is tiny by the exact diagonalization standards, and breaks rotation invariance. Yet we show that it allows a meaningful comparison to the 3D Ising CFT on $\mathbb{R}\times S2$, by including effective perturbations of the CFT Hamiltonian with a handful of local operators. This extreme example shows the power of conformal perturbation theory in understanding finite $N$ effects in models on regularized $S2$. Its ideal arena of application should be the recently proposed models of fuzzy sphere regularization.
- K. Farnsworth, M. A. Luty, and V. Prilepina, “Weyl versus Conformal Invariance in Quantum Field Theory,” JHEP 10 (2017) 170, arXiv:1702.07079 [hep-th].
- J. L. Cardy, “Conformal invariance and universality in finite-size scaling,” J. Phys. A 17 (1984) L385–L387.
- H. W. J. Blöte, J. L. Cardy, and M. P. Nightingale, “Conformal invariance, the central charge, and universal finite-size amplitudes at criticality,” Phys. Rev. Lett. 56 (1986) 742–745.
- I. Affleck, “Universal term in the free energy at a critical point and the conformal anomaly,” Phys. Rev. Lett. 56 (1986) 746–748.
- J. Cardy (ed.), Finite-Size Scaling. Elsevier, 1988.
- R. C. Brower, G. T. Fleming, and H. Neuberger, “Lattice Radial Quantization: 3D Ising,” Phys. Lett. B 721 (2013) 299–305, arXiv:1212.6190 [hep-lat].
- R. C. Brower, G. T. Fleming, and H. Neuberger, “Radial Quantization for Conformal Field Theories on the Lattice,” PoS LATTICE2012 (2012) 061, arXiv:1212.1757 [hep-lat].
- A.-M. E. Glück, G. T. Fleming, R. C. Brower, V. Ayyar, E. K. Owen, T. G. Raben, and C.-I. Tan, “Computing the Central Charge of the 3D Ising CFT Using Quantum Finite Elements,” PoS LATTICE2022 (2023) 370.
- R. C. Brower, G. T. Fleming, A. D. Gasbarro, D. Howarth, T. G. Raben, C.-I. Tan, and E. S. Weinberg, “Radial lattice quantization of 3D ϕ4superscriptitalic-ϕ4\phi^{4}italic_ϕ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT field theory,” Phys. Rev. D 104 no. 9, (2021) 094502, arXiv:2006.15636 [hep-lat].
- W. Zhu, C. Han, E. Huffman, J. S. Hofmann, and Y.-C. He, “Uncovering Conformal Symmetry in the 3D Ising Transition: State-Operator Correspondence from a Quantum Fuzzy Sphere Regularization,” Phys. Rev. X 13 (2023) 021009.
- L. Hu, Y.-C. He, and W. Zhu, “Operator Product Expansion Coefficients of the 3D Ising Criticality via Quantum Fuzzy Sphere,” arXiv:2303.08844 [cond-mat.stat-mech].
- C. Han, L. Hu, W. Zhu, and Y.-C. He, “Conformal four-point correlators of the 3D Ising transition via the quantum fuzzy sphere,” arXiv:2306.04681 [cond-mat.stat-mech].
- F. Kos, D. Poland, D. Simmons-Duffin, and A. Vichi, “Precision Islands in the Ising and O(N)𝑂𝑁O(N)italic_O ( italic_N ) Models,” JHEP 08 (2016) 036, arXiv:1603.04436 [hep-th].
- D. Simmons-Duffin, “The Lightcone Bootstrap and the Spectrum of the 3d Ising CFT,” JHEP 03 (2017) 086, arXiv:1612.08471 [hep-th].
- S. Rychkov, D. Simmons-Duffin, and B. Zan, “Non-gaussianity of the critical 3d Ising model,” SciPost Phys. 2 no. 1, (2017) 001, arXiv:1612.02436 [hep-th].
- M. Reehorst, “Rigorous bounds on irrelevant operators in the 3d Ising model CFT,” JHEP 09 (2022) 177, arXiv:2111.12093 [hep-th].
- B. Lao, “Conformal perturbation theory: 3D Ising model on Icosahedron,”. M2 ICFP internship report, supervised by S. Rychkov, June 2023, 46pp (Paris, France).
- S. Sachdev, Quantum Phase Transitions. Cambridge University Press, 2 ed., 2011.
- H. W. J. Blöte and Y. Deng, “Cluster Monte Carlo simulation of the transverse Ising model,” Phys. Rev. E 66 (2002) 066110.
- M. Schmitt, M. M. Rams, J. Dziarmaga, M. Heyl, and W. H. Zurek, “Quantum phase transition dynamics in the two-dimensional transverse-field Ising model,” Science Advances 8 no. 37, (2022) eabl6850.
- D. Poland, V. Prilepina, and P. Tadić, “The five-point bootstrap,” arXiv:2305.08914 [hep-th].
- N. Su, “Numerical conformal bootstrap study of all 4pt functions involving σ𝜎\sigmaitalic_σ, ε𝜀\varepsilonitalic_ε, ε’𝜀’\varepsilon’italic_ε ’ at Λ=19Λ19\Lambda=19roman_Λ = 19,”. unpublished.
- J. Kang and A. Nicolis, “Platonic solids back in the sky: Icosahedral inflation,” JCAP 03 (2016) 050, arXiv:1509.02942 [hep-th].