Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 181 tok/s Pro
2000 character limit reached

Reinforcing Localization Credibility Through Convex Optimization (2503.24156v1)

Published 31 Mar 2025 in eess.SP

Abstract: This work proposes a novel approach to reinforce localization security in wireless networks in the presence of malicious nodes that are able to manipulate (spoof) radio measurements. It substitutes the original measurement model by another one containing an auxiliary variance dilation parameter that disguises corrupted radio links into ones with large noise variances. This allows for relaxing the non-convex maximum likelihood estimator (MLE) into a semidefinite programming (SDP) problem by applying convex-concave programming (CCP) procedure. The proposed SDP solution simultaneously outputs target location and attacker detection estimates, eliminating the need for further application of sophisticated detectors. Numerical results corroborate excellent performance of the proposed method in terms of localization accuracy and show that its detection rates are highly competitive with the state of the art.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.